Inferring Generative Model Structure with Static Analysis
Paroma Varma, Bryan He, Payal Bajaj, Nishith Khandwala, Imon Banerjee, Daniel Rubin, Christopher Ré

Summary
- **Generative Models to Label Training Data**
 Use generative models to combine sources of weak supervision to assign noisy labels
- **Complex Dependencies among Sources**
 Sources of labels are rarely independent
- **Inferring Model Structure**
 Use static analysis to infer dependencies and encode in generative model structure

Theoretical Results
- **Learning Dependencies**
 Learning k-degree dependencies among n heuristics requires $O(n^{k-1} \log n)$ samples
- **Inferring Dependencies**
 Analyzing the code can infer the dependencies among heuristics without data
 Given dependencies, learning heuristic accuracies requires $O(n \log n)$ samples

Experimental Results
- Inferring dependencies outperforms learning dependencies
- Outperforms fully supervised model with additional noisy training labels

Heuristic Structure
- **Domain Specific Primitives (DSPs)**
 Interpretable characteristics of raw data
- **Heuristic Functions (HFs)**
 Programmatic rules that output noisy labels

Static Analysis
- **Shared Input** Sharing primitives as inputs leads to explicit dependencies
- **Compositions**: Primitives composed of others can lead to implicit dependencies

Statistical Modeling
- **HF Dependency** Represents the dependencies found using static analysis
- **DSP Similarity** Represents the learned correlations among the DSPs